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Quantum Computing Excitement Has Reached the U.S. Congress
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Anything in any way beautiful 
derives its beauty from itself and 

asks nothing beyond itself. Praise 
is no part of it, for nothing is made 

worse or better by praise.

A Classical Take on Quantum Computing
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Marcus Aurelius on Quantum Computing:



Feynman was one of the originators of the idea…

A Quantum Take on Quantum Computing
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Trying to find a computer simulation of physics seems 
to me to be an excellent program to follow out
. . . 
the real use of it would be with quantum mechanics
. . . 
Nature isn’t classical . . . and if you want to make a 
simulation of Nature, you’d better make it quantum 
mechanical, and by golly it’s a wonderful problem, 
because it doesn’t look so easy.
—1981



n classical 2-state systems: n bits of information
b1 … bn
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Quantum Information

b1 b2 b3 … bn

n quantum 2-state systems: 2n “bits” of information
a1 … ak where k = 2n

| i = a1|0 . . . 00i+ a2|0 . . . 01i+ a3|0 . . . 10i+ . . .+ ak|1 . . . 11i

1



• Peter Shor: A general-purpose quantum 
computer could be used to efficiently factor 
large numbers
– Shor’s Algorithm (1994)
– Resource estimates from LA-UR-97-4986 

“Cryptography, Quantum Computation and 
Trapped Ions,” Richard J. Hughes (1997)

Where the Excitement Started

6/20/18 Amundson | Quantum Computing8

num
size

1024 
bits

2048 
bits

4096 
bits

qubits 5124 10244 20484
gates 3x1010 2x1011 2x1012 n.b. This	is	an	old	estimate;	

improvements	have	been	made	
in	the	meantime.



hard

• Classical Computing
– “Easy” problems can be solved in “polynomial 

time” (P)
– “Hard” problems require “nondeterministic 

polynomial time” (NP)
• Proving P ≠ NP is a great unsolved problem in 

computer science
• Quantum Computing

– Some problems are easy in quantum computing, 
but hard in classical computing

– Some problems appear to be hard either way

Theoretical Computer Science
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P≠NP 
?

quantumly easy

classically 
easy



• Shor’s Algorithm: factorization
– Speedup: Superpolynomial

• Grover’s Algorithm: search
– Speedup: Polynomial

• Many more available at the Quantum Algorithm Zoo
– https://math.nist.gov/quantum/zoo/

Quantum Algorithms
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Qubit architecture

4

…
many
more

Ion trap

Scientific Reports 4, 3589 (2014)

NMR

Sci. China Phys. Mech. Astron.
59:630302 (2016)

NV center

Phys. Rev. B 86, 125204 (2012)

Quantum dot

Nature Nanotechnology
9, 981–985 (2014)

Linear optical

J. Opt. Soc. Am. B, 24, 2,
209-213 (2007)

Superconducting

Ann. Phys. (Berlin)
525, 6, 395–412 (2013) 

• Thanks to Andy Li
– Fermilab Scientific 

Computing Division’s first 
quantum computing 
postdoc! 

Current and Near-term Quantum Hardware

6/20/18 Amundson | Quantum Computing11



• Many companies have announced that they have produced small quantum 
computers in the 5-72 qubit range
– Google
– IBM
– Intel
– Rigetti
– IonQ
– Other companies…
– Academic efforts…
– D-Wave

• Quantum Annealing machine
– Subject of a much longer talk

Current Commercial Quantum Computing Efforts
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• The number of gates that can be applied 
before losing quantum coherence is the 
limiting factor for most applications
– Current estimates run few – thousand
– Not all gates are the same

• The real world is complicated
• IBM has a paper proposing a definition of 

“Quantum Volume”
– Everyone else seems to dislike the particular 

definition
– The machines with the largest number of 

qubits are unlikely to have the largest 
quantum volume

Counting Qubits is Only the Beginning
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num
bits

1024 
bits

2048 
bits

4096 
bits

qubits 5124 10244 20484
gates 3x1010 2x1011 2x1012

• “Logical qubits” incorporating error 
correction are the goal
– Probably require ~1000 qubits per 

logical qubit
• Minimum fidelity for constituent qubits 

is the current goalpost

From the earlier factoring estimate



• Fermilab has a mixture of on-going and proposed work in quantum computing in 
four areas:
– Quantum Computing for Fermilab Science
– HEP Technology for Quantum Computing
– Quantum Technology for HEP Experiments
– Quantum Networking

Fermilab Quantum Efforts
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• Quantum Computing will require the sort of infrastructure Fermilab already provides for 
classical computing
– HEPCloud will extend to Quantum Computing
– On-going testbed effort in collaboration with Google

• Partially funded by Fermilab LDRD
• Three promising areas for quantum applications in the HEP realm

– Optimization
• Area under active investigation in the quantum world
• NP-hard problems
• Quantum Approximate Optimization Algorithm (QAOA)

– Farhi, Goldstone and Gutmann
– Machine Learning

• Computationally intensive
• Also under active investigation in the quantum world

– Quantum Simulation
• Good reason to believe that quantum systems should be well-suited to quantum computation

Quantum Computing for Fermilab Science
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• Quantum Optimization and Machine Learning 
– Proposed work by Gabe Purdue, et al.

• Quantum Information Science for Applied Quantum Field Theory
– Marcela Carena, et al., including y.t. (yours truly)
– Scientific Computing Division/Theory Department collaboration

• Also includes University of Washington and California Institute of Technology
– First effort: Digital quantum computation of fermion-boson interacting systems

Fermilab Quantum Application Efforts
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• Quantum Chemistry has the first big successes in quantum 
simulation.

• GitHub has a project for general simulations of interacting 
fermions.

• However, interesting HEP systems, e.g., QCD, also require 
boson-fermion interactions.

Successful Quantum Simulation
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https://github.com/quantumlib/OpenFermion



• Previous encoding schemes for bosons on quantum 
computers had errors of O(noccupation/nqubits)

• Alexandru Macridin, Panagiotis Spentzouris, James 
Amundson, Roni Harnik
– Digital quantum computation of fermion-boson interacting 

systems
• arXiv:1805.09928
• Accurate and efficient simulation of fermion-boson

systems; simple enough for use on near-term hardware
– Electron-Phonon Systems on a Universal Quantum 

Computer
• arXiv:1802.07347
• First application was to polarons – electron dressed by 

phonons. Cross-disciplinary interest.

Digital quantum computation of fermion-boson interacting systems
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Interaction term evolution. The implementation of
the electron-phonon interaction is similar to the one for
single-particle electron operators which requires phase
shift T (✓) or z-rotations Rz(✓) gates acting on the elec-
tron qubits [6, 7]. The di↵erence is the value of the gate
angle ✓, which is replaced by ✓x̃, where x̃ is the eigenvalue
of X̃ corresponding to the phonon state |xi.

In Fig. 3 we show the implementation of
exp(�i✓c

†
i ciX̃n)|ii ⌦ |xni = (T (✓x̃n)|ii) ⌦ |xni where |ii

is the i fermion orbital and |xni is the state of the HO n.

The circuit for exp(�i✓

⇣
c
†
i cj + c

†
jci

⌘
X̃n) (not shown)

is similar to the circuit shown in Fig. (9) of Ref. [7] or
Table A1 of Ref. [6] for exp[�i✓(c†i cj + c

†
jci)]. The di↵er-

ence is that Rz(✓) is replaced by Rz(✓x̃n) (see Fig. 8 in
Ref. [10]).

The nonlocality of the Jordan-Wigner mapping in-
creases the circuit depth for fermion algorithms [4, 6, 7].
However, the implementation of the electron hopping and
electron-phonon terms can be combined. One can imple-
ment exp[�i(c†i cj + c

†
i cj)(✓0 +

P
n ✓nX̃n)], and there will

be no additional Jordan-Wigner strings due to electron-
phonon terms. The contribution to the circuit depth for
long-range electron-phonon interactions is O(N).

Input state preparation. The input state for the QPE
algorithms must have a large overlap with the ground
state. The input state can be obtained by the adiabatic
method [32], starting with H0 = He + Hp and slowly
turning on the electron-phonon interaction. The ground
state of H0 is |f0i⌦|�0i, where |f0i is the fermion Hamil-
tonian ground state. Its preparation, while non-trivial,
is addressed in the literature [3, 6, 7, 33]. The ground
state of Hp is a direct product of grid-projected Gaus-
sian functions |�0i, Eq.(9).

Methods to prepare Gaussian states are discussed in
Refs. [34, 35]. For the polaron simulations we use the
adiabatic method to prepare |�0i. Namely, we simulate
the time evolution of the state |x = 0i under the action
of the Hamiltonian H(⌧) = s(⌧)P̃ 2

/2 + X̃
2
/2 for the

annealing time T where ⌧ = t/T . The parameter s(⌧)
is varied slowly from zero to one in the time interval
T . Because X̃

2
/2 has a finite gap of size ⇡/2nx , this

approach works on small registers [10].
Measurements. Measurements methods described

previously [4, 7] can be applied to our algorithm.
Resource scaling. The number of additional qubits re-

quired by phonons is O(N). For finite-range interactions
the phonons introduce an O(N) contribution to the total
number of gates and a constant contribution to the cir-
cuit depth. For long-range electron-phonon interactions
the circuit depth increases linearly withN while the addi-
tional number of gates needed is O(N2). For long-range
phonon-phonon couplings both the additional number of
gates and the circuit depth scale as O(N2).

Holstein polaron on a quantum simulator. The
polaron problem [36], i.e., a single electron interacting
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FIG. 4. nx = 6 qubits per HO. The energy (a) and quasiparti-
cle weight (b) for the 2-site Holstein polaron versus coupling
strength. (c) The phonon number distribution for di↵erent
couplings. The open (full) symbols are computed using exact
diagonalization (QPE algorithm on a quantum simulator).

with phonons, has been addressed extensively in the lit-
erature. In the Holstein model [21] the phonons are de-
scribed as set of independent oscillators located at every
site. The electron density couples locally to the displace-
ment of the HO,

H = He + g

X

i

c
†
i ciXi +

X

i

P
2
i

2
+

1

2
!
2
X

2
i . (18)

To check the validity of our algorithm we ran a QPE
code for the Holstein polaron on a 2-site lattice using
an Atos QLM simulator. The 2-site polaron can be
solved using the exact diagonalization method on a con-
ventional computer. A comparison between exact diago-
nalization and our quantum algorithm is shown in Fig. 4.
The agreement is good, with a di↵erence of O(10�4) due
mainly to the use of the Trotter approximation. We find
that nx = 6 qubits for each HO is enough to describe the
physics even in the strong coupling regime, which in our
case implies a cuto↵ of Nph ⇡ 45 phonons per site.
In Fig. 4(a) the energy of the polaron as a function

of the dimensionless coupling constant ↵ = g
2
/2!2

t is
plotted. Even this simple 2-site model captures some es-
sential features of more realistic polarons. The transition
from light to heavy polarons as a function of the coupling
strength is smooth, similar to what is seen in 1D polaron
models [37].
The polaron state can be written as |�i =P
n=0

P
r anr|n, ri, where {|n, ri}r are normalized vec-

tors spanning the sector with one electron and n phonons.
The phonon distribution is defined as Z(n) =

P
r |anr|2

and can be determined by applying the QPE algorithm
for the phonon evolution Hamiltonian Hp =

P
i P

2
i /2 +

!
2
X

2
i /2. Since |�i is not an eigenstate of Hp, the energy

En = !(n+ 1/2) is measured with the probability Z(n).
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Therefore the algebra generated by X̃ and P̃ is isomor-
phic with the algebra generated by X and P on the har-
monic oscillator subspace spanned by {|�ni}n<Nph .

The vectors {|�ni}n<Nph are eigenvectors of

H̃h = P̃
2
/2 + X̃

2
/2, (17)

satisfying H̃h|�ni = (n+ 1/2) |�ni. Moreover, they span
the low-energy subspace of H̃, as the numerical investi-
gation presented below shows.

The eigenspectrum Ẽn of H̃h calculated by exact di-
agonalization is shown in Fig. 1(a). The first Nph en-
ergy levels are the same as the corresponding HO en-
ergy levels, i.e., Ẽn = n + 1/2 + ✏. The eigenstates
{|�̃ni}n<Nph of H̃h are the projected HG functions on
the discrete basis {|�ni}n<Nph , Eq.(9). This can be
inferred from Fig. 1(b) where we see that the overlap
|h�̃n|�ni| = 1 � ✏ for n < Nph. Fig. 1(c) shows that
|([X̃, P̃ ] � i)|�̃ni| < ✏ for n < Nph. The value of ✏ is
exponentially small, a consequence of cutting the tails of
the HG functions for |x|, |p| > L. Numerically, we find
|✏| . 10 exp[�0.51Nx(1 � 1.5Nph/Nx)]. The numerical
results agree with the analytical predictions, supporting
the isomorphism between the {X̃, P̃} and the {X,P} al-
gebras on the low-energy subspace defined by n < Nph.

The size Nx of H̃ increases approximately linearly with
increasing Nph. In Fig. 1(d) we plot the minimum Nx

necessary to have Nph states in the low-energy regime
with ✏ = 10�7 and ✏ = 10�3 accuracy. The proportional-
ity between Nx and Nph is a consequence of the relations
LNph /

⇠

p
Nph [10] and LNph /

p
Nx.

As long as the physics can be addressed by truncating
the number of phonons per state our finite-sized repre-
sentation is suitable for computation. The cuto↵ Nph in-
creases with increasing e↵ective strength of interaction.
For stable systems the truncation errors are expected to
converge quickly to zero with increasing Nph [10].

Algorithm. Our algorithm simulates the evolution
operator exp(�iHt) on a gate quantum computer.
We employ the Trotter-Suzuki expansion [28, 29] of
exp(�iHt) to a product of short-time evolution opera-
tors corresponding to the noncommuting terms in the
Hamiltonian.

On a gate quantum computer each HO state is repre-
sented as a superposition of Nx discrete states {|xi} and
stored on a register of nx = log2 Nx qubits. The opera-
tors X and P are replaced by their discrete versions X̃

(Eq.(13)) and P̃ (Eq.(14)), respectively. The following
equations are true: X̃|xi = x̃|xi and P̃ |pi = p̃|pi, where
{|pi} are obtained from {|xi} via the discrete Fourier
transform. The eigenvalues are x̃ = (x � Nx/2)� and
p̃ = [(p +Nx/2) mod Nx �Nx/2]�. They are di↵erent
from the ones in Eqs. (13) and (14) since the stored states
in the qubit registers are numbers between 0 and Nx � 1
and not between �Nx/2 and Nx/2� 1.

FIG. 2. The circuit |xni �! exp(i2nx�2
✓) exp[�i(xn �

2nx�1)2✓]|xni requires nx phase shift gates and nx(nx �
1)/2 controlled phase shift gates. The angles of the phase
shift gates are determined by writing (xn � 2nx�1)2 =Pnx�1

r=0 x
r
n

�
22r � 2nx+r

�
+
P

r<s x
r
nx

s
n2

r+s+1+22nx�2, where
{xr

n}r=0,nx�1 is the binary representation of xn.

FIG. 3. Circuit for exp(�i✓c
†
i ciX̃n)|ii ⌦ |xni. The phase

shift angle is ✓(xn �Nx/2) = ✓
Pnx�1

r=0 x
r
n2

r � ✓2nx�1, where
{xr

n}r=0,nx�1 take binary values.

Phonon evolution. Within the Trotter approxima-
tion, the algorithm for the evolution of phonons requires
the implementation of exp(�i✓X̃

2
n)|xni, exp(�i✓P̃

2
n)|xni

and exp(�i✓X̃nX̃m)|xni|xmi, where n and m are HO la-
bels.

The implementation of exp(�i✓X̃
2
n)|xni requires phase

shift gates T and is shown in Fig. 2. The angles of the
phase shift gates are determined by writing the eigenval-
ues of X̃2

n in binary format, as shown in the figure’s cap-
tion. A phase factor equal to exp(i2nx�2

✓) accumulates
at each Trotter step. This phase factor can be tracked
classically.

For the implementation of exp(�i✓P̃
2
n)|xni one first ap-

plies a quantum Fourier transform (QFT) [25] |xni
QFT���!

|pni, an idea first discussed in Refs. [30, 31]. Then
exp(�i✓P̃

2
n)|pni is implemented by a circuit similar to

the one shown in Fig 2. The last step is an inverse QFT,

|pni
IQFT����! |xni.

The operator exp(�i✓X̃nX̃m)|xni|xmi requires two bo-
son registers, n and m. The phase shift angles are de-
termined by writing the product x̃nx̃m as a sum with
binary coe�cients [10]. The circuit is similar to the one
in Fig. 2. It has n2

x controlled phase shift gates and 2nx

phase shift gates.
Electron evolution. The algorithm for fermions is de-

scribed at length in numerous papers (see Refs. [4, 6, 7].)
We assume here a Jordan-Wigner mapping of the fermion
operators to the Pauli operators X, Y , and Z as in
Ref. [7]. Each electron orbital requires a qubit, the state
| "i ⌘ |0i (| #i ⌘ |1i) corresponding to an unoccupied
(occupied) orbital.



SRF	resonators

• Ultra-High Q Superconducting Accelerator 
Cavities for Orders of Magnitude 
Improvement in Qubit Coherence
– Alex Romanenko, et al.

• Novel Cold Instrumentation Electronics for 
Quantum Information Systems
– Davide Braga, et al. 

HEP Technology for Quantum Computing
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• Matter-wave Atomic Gradiometer 
Interferometric Sensor 
(MAGIS-100)
– Robert Plunkett, et al.

• Skipper-CCD: new single photon 
sensor for quantum imaging
– Juan Estrada, et al.

• Quantum Metrology Techniques for 
Axion Dark Matter Detection
– Aaron Chou, et al.

Quantum Technology for HEP Experiments
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• Quantum Networking is outside the scope of this talk
– We are working on it at Fermilab, in collaboration with the California Institute of Technology
– Quantum Communication Channels for Fundamental Physics

• Maria Spiropulu, et al. (California Institute of Technology)

Quantum Networking
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• Quantum computing holds the promise of remarkable new computational 
capabilities
– The future is not here yet

• … but we are getting there
• Fermilab has quantum computing efforts on many fronts

– Quantum Applications
– HEP technology for QC
– QC technology for HEP experiments
– Quantum Networking

Conclusions
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